Chromalox® intelliPANEL™ is a complete process temperature power control solution with “industry-best” price and performance. IntelliPANEL provides the user with an easy touch-screen interface, continuous built-in monitoring, scalability, and customization.

intelliPANEL™ specifications include:
• Color Touchscreen Operator Panel
• 8 Points of temperature monitoring
• Temperature and Alarm Display for all 8 Temperature Sensors
• 4 Control Modes: Single Loop, Temperature Differential, and 2 Cascade modes
• Temperature Range Selection of 0-250°C, 0-500°C, 0-1000°C, 0-1500°C, 0-2000°C
• Programmable Setpoint Ramping
• Adjustable Deadband and HI-HI, HI, LO, & LO-LO Alarm Setpoints for each point
• Input Sensor Type, Engineering Unit, and Open Sensor Selection (in groups of 4)
• Ground Fault Alarm/Trip, Adjustable from 30 to 300 mA with Graphical Trending
• 4 Alarm Outputs, Programmable as either Normally Open or Normally closed
• Temperature and Discrete Alarm Mapping to any of the 4 Alarm Outputs
• 4 User Definable Discrete Interlocks – Including one with Time Adjustable Delay
• 20 Character Text Entry Identification for all Temperature Inputs and Interlocks
• 4 Levels of Security with User Defined Numeric Passwords
• Programmable Setpoint Entry Range Limits
• Programmable Open Sensor Protection
• Virtual Chart Recorder
• Alarm History Logging
• Time and Date Stamp on Alarms
• RS-422/485 MODBUS Configurable Network Communications
• Language Selection
• NEMA 12 Enclosure Construction
• Operating Environment: 32-120°F

We think you’ll be satisfied with the high quality product Chromalox has shipped to you. If you have application questions, refer to the Engineering Resource section of our website at www.chromalox.com, to find the answer you’re looking for, or call one of our application engineers at 1-888-996-9258 for personal assistance.
Table of Contents

Safety Precautions .. 4
intelliPANEL™ Welcome Screen .. 5
Main Menu ... 6

I. System Setup Menu .. 7
 Security .. 7
 Setting User Passwords .. 8
 Setting Time and Date ... 10
 Sensor Identification Text Entry ... 11
 Interlock Identification Text Entry ... 13
 Input Selection ... 14
 - Sensor Type Selection .. 14
 - Engineering Unit Selection ... 15
 - Open Sensor Protection ... 15
 Interlock Setup ... 16
 Mode and Range Settings .. 17
 - Control Mode ... 18
 - Temperature Range .. 19
 - Setpoint Limits .. 19
 - Setpoint Ramping .. 20
 Applying Communication Settings .. 21
 Alarm Setup .. 23
 - Alarm Outputs .. 23
 - Temperature Alarms .. 24
 - Discrete Alarms .. 26
 Language Selection .. 27
 Setting Screen Brightness/Contrast for the Touchscreen ... 27

II. Operation .. 28
 Alarm Screens ... 29
 - Alarm Indication and Reset ... 30
 - System Master .. 32
 - Alarm History .. 33
 Graphic .. 34
 Heater Status ... 35
 Temperature Data .. 36
 Tune & Control ... 37
 - Single Loop Control .. 37
 - Differential Control ... 38
 - Cascade Control .. 39
 - Remote Command Signal ... 40
 Interlock Status ... 40
 Temperature Trending .. 41
 GF (Ground Fault) Trend .. 42

III. Loop Tuning ... 43
 Single Loop and Differential Mode Manual Tuning ... 43
 Single Loop and Differential Mode Auto Tuning ... 44
 Cascade Mode Manual Tuning ... 45
 Cascade Mode Auto Tuning ... 47

IV. Specifications ... 50

V. Help Menu .. 52

VI. Service Information .. 55

Appendix
 - MODBUS™ Register Numbers ... A.1
 - Replacing the CPU Backup Battery .. A.4
 - Theory of Operation ... A.5
Important Safeguards

Throughout the intelliPANEL™ Setup Guide, these symbols will alert you to potential hazards. Safety precautions should always be followed to reduce the risk of fire, electrical shock, and injury to persons. Please read all instructions before operating your intelliPANEL™ Control Panel. To avoid electrical shock or injury, always remove power before servicing a circuit. Personnel working with or near high voltages should be familiar with modern methods of resuscitation. Contact an area supervisor or safety personnel for more information.
intelliPANEL™ system provides users with an easy-to-use touchscreen interface. Getting into the system is as simple as touching the “Begin” button on the Welcome screen, as seen below.

The “Begin” button takes the user to the Main Menu of intelliPANEL™, where the user can choose from several navigation buttons (displayed in yellow) which allow the user to setup the system, view alarm and interlock status, temperature and heater data, trend graphs, and access help menus.
The Main Menu is where all the features and screens of the intelliPANEL system are accessed. The screens give the user the status of the system, alarm information, temperature data, trending, and the ability to setup the system.

Main Menu

Alarm – Displays alarm status and history

Tune/Control – Allows user to modify setpoint, change loop modes, adjust outputs and access the loop tuning screens. (This button is hidden when Remote Command Signal control mode is selected.)

Heater – Displays voltage, current, power, duty cycle, kilo-watt/hours, and resistance values. Unbalanced current alarm setpoint and indicators are also found on these screens.

Temp Data – Displays current temperature, high and low values, and allows reset of those values.

Graphic – Displays graphical picture of the heater and current temperatures.

System Setup – With the proper password, this button displays the System Setup Menu.

Interlock – Displays interlock status information.

Temp Trend – Displays the 6-pen temperature trend chart.

GF Trend – Selects the Ground Fault Leakage Current chart recorder.

Help – Takes the user to the Help Menu which contains troubleshooting guides, product information, tuning help, spare parts list, preventive maintenance guides, and Chromalox contact information.
I. System Setup Menu

The System Setup Menu allows the user to access all of the parameters for the operation of the system including; input selection, control mode, setpoint limits, setpoint ramping, alarm settings, communications settings, and set the range for trend charts. Settings made on the System Setup screens provide operating ranges for the entire system, and define the parameters in which the system will operate. Please use caution when applying changes to the setup parameters. To begin the setup procedure, press the “System Setup” button on the Main Menu.

![Main Menu](image)

1. Press the “System Setup” button on the touchscreen.

Security

intelliPANEL™ has built-in security settings that require a password for access to the System Setup screen. When accessing protected areas a keypad is displayed, requiring the user to enter a password. The factory default setting for the Manager's password is 1234.

![Security](image)

2. Use the touchscreen keypad to enter Manager’s password. (Factory preset Manager’s password: 1234)

3. Press “ENTER” display the System Setup Menu.

Upon entering the correct password, the user is permitted to access the System Setup Menu.
Setting User Passwords
Pressing the “Passwords” button on the System Setup Menu displays a numeric keypad for password entry. The Manager’s password is required to open the Passwords screen from the System Setup Menu.

1. Press the “Passwords” button

Once the Manager’s password is entered, the user is given access to the password setup screen. From there, the four security level passwords can be changed to user defined numeric values. Each password can be assigned a value between 0 and 65535.
Note: If passwords are changed from the default values, the new values should be recorded and kept in a safe location. Passwords that are set to “0” allow unlimited access to that security level’s features.

Any time a password is required to gain access to a particular feature, a numeric keypad is displayed that reads “ENTER SECURITY CODE”. Each level of security has different access rights within the system. These access rights are outlined below.

Manager Level: Allows access to all features in the intelliPANEL system *including* Password Setup.

Engineer Level: Allows access to all features in the intelliPANEL system *except* Password Setup.

Supervisor Level: Allows access to all features on the Main Menu *except* the System Setup Menu and Loop Tuning features. Supervisor level access or greater is required to activate the CLEAR and CLEAR ALL command buttons on the Alarm History and Alarm Count Screens. (See page 31, Section II, Alarm Screens - Alarm History)

Maintenance Level: Allows access to all features on the Main Menu *except* the System Setup Menu. Maintenance users are allowed access to all Loop Tuning features and may reset alarms, but cannot clear them.

NOTE: A security code is not required to view or control any feature on the screens from the Main Menu other than the System Setup Menu and the Tuning features found on the Tune/Control screen. (See page 41, Section III, Loop Tuning)

IMPORTANT: To prevent unauthorized changes to system setup parameters, the user should go back to a screen that is not password protected such as the Main Menu prior to leaving the system.
Setting Time and Date

From the System Setup Menu, press the “Time/Date” button at the top of the second column. This will open the screen for time and date entry.

The current time and date are shown in the lower-left corner of the screen. The clock is in 24-hour format. To modify the time, press the value entry field labeled “Hour” and enter the current hour value (0-23) on the provided keypad. Next enter the current minutes. When both hours and minutes are correct, press the “Set Time” button and the time in the lower left will change to the adjusted values in the setting fields.

Adjusting the date is done in a similar manner. First enter the numeric value for the month. It is important to set the correct month first since this determines the highest value that may be entered for the day. intelliPANEL recognizes the month entry and limits the day setting according to the number of days in that month. Leap years are already taken into account for the month of February so that a 29th day can be entered based on the year. Once the correct values are entered for month, day, and year, press the “Set Date” button. The entered values will be reflected in the date found in the lower-left corner of the screen.

Note: It is necessary to enter the year first when manually entering February 29th.
Sensor Identification Entry

All eight temperature inputs have text identification fields that allow the user to name the sensors for easier recognition. These character fields are each 20 characters long and will accept alphanumeric data. To enter the identification text, go to the System Setup Menu and press the button in the first column labeled “Sensor ID”.

1. Press the Sensor ID button on the touchscreen.

This will display the first sensor identification screen. From this screen the text identification for inputs 1-4 can be entered. Pressing the text entry field brings up the alphanumeric keypad for entering the text identifier.

2. Press the text entry field to display the keypad.
Sensor identifiers can be up to twenty (20) alphanumeric characters in length in either upper or lower case.

3. Use the keypad to enter the identifier. The results are displayed in the current edits window.

ENT – Enter key saves current edits to the selected identifier.
CAN – Cancels current edits and closes the keypad.
CAP – Toggles upper / lower case.
SP – Space Key.
DEL – Deletes last character.
CLR – Clears all characters.

IMPORTANT: Pressing the ANY “Default ID” button will OVERWRITE ALL text identifiers in the system with the factory default shown in the screen prints of this manual. This includes Sensor Inputs 1-8, Interlocks 1-4 and both Discrete Alarm Inputs.
Interlock Identification Entry

Each of the 4 interlocks has a text identification field that allows the user to name the discrete interlocks. These character fields are each 16 characters long and will accept alphanumeric data. To enter the identification text, go to the System Setup Menu and press the button labeled “Interlock ID”.

1. Press the Interlock ID button on the touchscreen.

This will display the interlock identification screen. From this screen the text identification for the four interlocks can be entered. Pressing the text entry field brings up the alphanumeric keypad for entering the text identifier.

2. Press the text entry field to display keypad.

IMPORTANT: Pressing the ANY “Default ID” button will OVERWRITE ALL text identifiers in the system with the factory default shown in the screen prints of this manual. This includes Sensor Inputs 1-8, Interlocks 1-4 and both Discrete Alarm Inputs.
Interlock identifiers can be up to sixteen (16) alphanumeric characters in length in either upper or lower case.

3. Use the keypad to enter the identifier. The results are displayed in the current edits window.

ENT – Enter key saves current edits to the selected identifier.
CAN – Cancels current edits and closes the keypad.
CAP – Toggles upper / lower case.
SP – Space Key.
DEL – Deletes last character.
CLR – Clears all characters.

Input Selection

Input selection consists of three parts; choosing the input type, engineering unit selection, and open sensor setup. To prepare the sensor inputs, go to the System Setup Menu and press the button in the first column labeled “Input Selection”. This will open the first Input Selection screen which allows the setup of the first group of sensors (Inputs 1-4).

Sensor Input Type

Temperature inputs in the intelliPANEL™ system are configured in groups of four. Thermocouple inputs can be configured as Type J, K, or E thermocouple. RTD inputs can be configured as either 100 Ω Platinum 385 or 100 Ω Platinum 392, or 1000 Ω. The exact configuration will depend on the intelliPANEL™ option purchased and the sensors being installed. To setup inputs 1-4, press the appropriate button for the type of sensor being used. Yellow indicates the type selected.
2. Press the appropriate button for the correct module and type of sensor being used.

3. Select Fahrenheit (F) or Celsius (C) for temperature display units. The selection is universally applied to all eight sensors.

Engineering Unit Selection
The next step is to select the desired engineering units for display. The intelliPANEL™ system supports both Celsius and Fahrenheit temperatures, and will automatically convert from °C to °F and vice versa if the temperature units are changed. (This setting is universally applied to all eight sensor inputs.)

Open Sensor Protection
Temperature values can be set to read either up scale or down scale on sensor burnout. Press the button that represents the direction temperature values should go when an open sensor is detected. Once the settings have been made, press the “Apply Changes” button. This writes the user selections to the controller. If the “Apply Changes” button is not pressed, no changes are made to the configuration.
Next, press the “>” button to open the setup screen for Inputs 5-8. Follow the same procedure for the configuration of the second group of sensors. If the “Apply Changes” button is not pressed, no changes are made to the configuration. To return to the Setup Menu, press the “Setup Menu” button.

Pressing the “<“ button returns the user to the setup screen for Inputs 1-4.

Set the parameters and press the “Apply Changes” button to write the configuration data to the controller.

Press the “Setup Menu” button to return to the System Setup Menu.

IMPORTANT: Incorrect setup of the input sensors can cause injury to personnel or equipment damage due to errors in temperature readings. Verify that you are changing the right group of inputs prior to applying changes and that changes match the sensor type used on your system.

Interlock Setup

From the System Setup Menu, press the button labeled “Interlock Setup”.

1. Press the “Interlock Setup” button to open the interlock setup screen.
There are 4 user-definable interlocks in the intelliPANEL™ system. Three of the interlocks are immediate acting and one can be setup with a time delay. Each can be individually configured to accept an open or closed contact for activation. Any interlock that is not being used can be disabled by pressing the corresponding button in the “Enabled” column. Text identifiers entered by users are displayed for easier recognition. (See page 13, Section I, Interlock Identification Text Entry)

2. Pressing the “Active State” buttons toggle the selection between Open and Closed.

3. Pressing the buttons in the “Enabled” Column toggles the selection between “Yes” (enabled) and “No” (disabled). Disable interlocks that are not being used.

4. Pressing the numeric entry field displays a keypad for entry of the interlock delay time in seconds. This can be any value between 0.0 and 999.9 seconds. One decimal place is implied.

IMPORTANT: Incorrect setup of the interlocks may prevent the system from starting or cause an unexpected shutdown. Verify that the active state chosen matches the inputs wired to the system.

Mode and Range Settings

The intelliPANEL™ controller has five control modes available: Single Loop – Outlet; Single Loop – Differential Outlet/Inlet; Cascade – Outlet to Sheath; Cascade – Input 5 to Sheath; and Remote Command Signal. There are five user selectable temperature ranges; 0-250°F, 0-500°F, 0-1000°F, 0-1500°F, and 0-2000°F. Minimum and maximum setpoint limits can be set and setpoint ramping is configurable. To access the setup of these features, go to the System Setup Menu and press the “Mode/Range” button.
Control Mode

With the Control Mode/Range Selection Screen displayed, select one of the four control modes.

Single Loop Outlet mode controls the Outlet temperature (Input 2) with a single PID loop. **Delta T Outlet-Inlet** (Input 2 minus Input 1) mode uses a single PID controller to maintain a constant differential temperature between the Outlet and Inlet temperatures. **Cascade Outlet/Sheath** mode uses the outlet temperature loop as the major cascaded to the sheath temperature (Input 4) minor loop. The **Cascade Process/Sheath** mode uses process temperature (Input 5) loop as the major cascaded to the sheath temperature (Input 4) minor loop. **Remote Command Signal** mode allows a 4-20mA signal from an external source (i.e.: DCS, PLC, etc.) to be passed through to the SCR controller.

IMPORTANT: The Control Mode Selection CANNOT be changed without both loops being in Manual mode. If either of the loops is not in manual mode, the loop mode warning message at the top of the screen will flash red.

Control Mode Warning Message: Control mode cannot be changed.

Loop Mode Warning Message: Loops are in Manual mode. The control mode can now be changed.
Temperature Range

Selection of the temperature range will set up the correct span for the trend charts discussed later. (See page 41, Section II, Temperature Trending) Choose the most appropriate temperature range for your process by pressing the button for the range that most closely represents your process.

2. Press the desired “Mode” button to set the control mode. Single Loop - Outlet control is currently selected.

3. Select the temperature range by pressing the appropriate button in the second column. As shown, the 0-250˚F range is selected.

Setpoint High and Low Limits

To access the Setpoint Limit setup screen, press the “Setpoint Limits” button on the Control Mode/Range Selection screen. This will open the Setpoint Limit Setting screen.

4. Press the numeric entry field for the High or Low Setpoint Limits and enter the values using the numeric keypad. If the same values are entered for the High and the Low a “Setting Error!” message will be displayed.
Setpoint Ramping

The unique Setpoint Ramping feature of the intelliPANEL™ system allows the user to set up a ramp rate in degrees/hour for the setpoint. When enabled, the setpoint that is fed to the controller will ramp from the current temperature to the entered setpoint at the rate specified. This feature can also be disabled allowing the loop control to reach setpoint at a rate based solely on the PID tuning values entered for the loop. To access the Setpoint Ramping setup screen press the “Setpoint Ramping” button on the Control Mode/Range Selection screen.

There are two sets of limits to be set. The “Setpoint Entry” limits on the left are the limits that control the high and low values that can be entered by the operator. They apply to the operator entered setpoints for single loop, differential, and both the major and minor cascade loops. The “Minor Loop Remote Setpoint” limits are used to scale the 0-100% output of the Major loop for use as the temperature setpoint of the Minor loop. For example, if the high limit for the remote setpoint is set to 2000° and the low limit is set to 500°, the setpoint of the minor loop will have a total range of 1500°. When the minor loop is in cascade mode and the major loop’s output is 50% the remote setpoint will be 1250°.

Remote Setpoint = (2000-500) x 0.50 + 500 = 1250°

To set a limit, press the corresponding numeric entry field and enter the new value using the keypad provided. If the high limit and the low limit are set to the same values, a “Setting Error!” message will be displayed. To reset the error, correct the limit settings. If the high limit is set to a value that is lower than the low limit, the new value will not be accepted and the high limit will revert to the previously entered high limit. If the low limit is set to a value that is higher than the high limit, the low limit will revert to the previously entered value. These fields are limited by the engineering units chosen on the Input Selection screen, 0-1250° when °C is selected and 32-2000° when °F is selected.

1. Press the “Setpoint Ramping” button to open the Setpoint Ramping Setup Screen.
Applying Communication Settings

The intelliPANEL™ system can be setup and monitored by connecting it with a personal computer, PLC or DCS. intelliPANEL™ communications can be configured for either RS-422 or RS-485 Modbus communications protocol and operates as a slave on the network. Baud Rate, Parity, Stop Bits, and Station Address must be set in accordance with the type of software/network being used. We suggest you check with the Information Technology professionals at your facility regarding the type of hardware and communications settings your network hardware requires. To access the communications settings, press the “Communications” button on the System Setup screen.

NOTE: Access to this screen requires either the Manager’s or the Engineer’s password.
This will open the Communications screen. From here the baud rate, RTS values, parity, number of stop bits, and mode can be set.* Current selections are highlighted in yellow.

2. Set the required baud rate.

3. Select the values for RTS On and Off delays.

4. Choose none, odd, or even parity.

5. Select the number of stop bits.

6. Set the communications mode.

7. Set the slave address for the intelliPANEL.

The final step to complete the communications configuration is to press the “Update Port 2”. The selected communication values are not written to the controller until the “Update Port 2” button is pressed. To leave this screen without saving the selections to the controller, press the “Setup Menu” button. You will be returned to the System Setup Menu.

*For a complete list of the communicated variables and their MODBUS™ addresses, refer to the Appendix in the back of this manual.
Alarm Setup

Alarm Outputs
The intelliPANEL™ system has four configurable alarm outputs. These alarm outputs can be set up as either normally open or normally closed. The alarm outputs are referenced as General Alarm, Common Temperature Alarm, Alarm Relay 1, and Alarm Relay 2. From the System Setup Menu, press the “Alarm Setup” button to access the setup screens.

1. Press the “Alarm Setup” button to access the first alarm setup screen.

The first screen allows the user to set up the alarm outputs. Each output has a corresponding button for the selection of the output state. Pressing an “Alarm State” button toggles the selection between open and closed and the selection is indicated by the button’s text. When “Open” is selected, the contact will normally be closed. When any alarm condition is detected the contact will open. When “Closed” is selected, the contact will normally be open. When an alarm condition is detected the contact will close. Pressing the “<” and “>” buttons takes the user through the alarm setup screens.

2. Press the “Alarm State” button for the chosen alarm output to toggle the selection.

Press the “<” button to go to the Discrete Alarm Setup screen.

Press the “>” button to go to Input 1 Alarm Setup screen.

2. Press the “Alarm State” button for the chosen alarm output to toggle the selection.
Low Battery Alarm Output:
The memory in the CPU is protected by a battery backup. When the battery is low, output contact Y17 is closed and the alarm is displayed in the alarm history. This alarm can only be reset by replacing the battery. See page A.4 in the Appendix for battery replacement instructions.

![WARNING: If the CPU has been without power for more than ten days with a low battery the system configuration data may have to be reloaded.]

Temperature Alarms
The intelliPANEL™ system has the ability to monitor up to 8 temperature inputs for any one of four conditions: HI-HI, HI, LO, and LO-LO alarms. Additionally, each alarm can be programmed as either latching or non-latching, and can be mapped to any or all of the alarm outputs. From the System Setup Menu press the “Alarm Setup” button. Then, from the Alarm Output Setup screen press the “>” button in the upper right corner. This will open the first alarm setup screen for Input 1.

To set the alarm setpoints, press the numeric entry field adjacent to the alarm description. Using the provided keypad, enter the alarm setpoint for the chosen alarm and press enter. The Deadband is a common value per input channel that sets the amount below (HI & HI-HI) or above (LO & LO-LO) the alarm point the temperature must reach for the alarm to clear. Enter the Deadband following the same procedure as the alarm setpoints.

1. Enter the Deadband and alarm setpoints by pressing the numeric entry fields.
2. Press the “Latching” Button to toggle between latching and non-latching.
3. Press “More” to complete the alarm setup for the currently selected input.

Alarm setpoints must maintain the relationship of HI-HI>HI>LO>LO-LO. If an entry causes this relationship to no longer be true, the setpoint entry error indicator will change from green “Setpoint OK” to flashing red “Setpoint Error”. To correct the error, simply modify the setpoints to make the relationship true again.
Pressing the “More” button opens the second alarm setup screen for the currently selected input. This screen is used to map the selected alarms to the alarm outputs. The temperature alarms are listed on the left and the alarm outputs are listed across the top. Setting an alarm to “Yes” will cause that alarm to be mapped to the selected alarm output. A selection of “No” will remove it. For instance, in the example below, Input 1’s HI-HI and LO-LO alarms will not be sent to the General Alarm output, but both the HI and the LO will be sent.

Press the “Return” button when you are satisfied with the alarm mapping. This will reopen the Alarm Setup screen for the selected input. Press the “>” button in the upper right hand corner of the display to proceed to the Alarm Setpoint Setup screen for Input 2. Using this procedure, continue to setup the temperature alarms for Inputs 2-8.

The “<” and “>” buttons scroll through the setup screens in a loop as shown below:

Discrete Alarms

Two discrete alarm inputs are available on the intelliPANEL™ system. Alarm Input 1 is predefined as a purge alarm and is provided for use on systems with the cabinet purge option. If the purge option is not installed, the alarm input can be setup as a user defined alarm input. Alarm Input 2 is labeled as “Spare” and is available for user defined alarming. The alarms can each be renamed (10 characters) to suit the user’s preference. Both alarms have to be enabled to function and can be mapped to the General Alarm, Alarm Relay 1 or Alarm Relay 2. These two alarm inputs accept normally closed inputs that open on alarm. To access the Discrete Alarm Setup screen from the System Setup Menu press the “Alarm Setup” button. This will open the Alarm Output screen. From there press the “<” button and the Discrete Alarms setup screen will open. This screen can also be accessed from the Input 8 Alarm Setpoint setup screen by pressing the “>” button.

1. Press the “Alarm Setup” button on the System Setup Menu.

2. Press the “>” button on the Alarm Output screen.

3. Press the text entry fields to rename as needed.*

4. Pressing the “Enable” button toggles the chosen alarm enable between YES and NO.

5. Select the alarm outputs to be associated with the chosen alarm input.

*Note: When the discrete alarms are displayed in the Alarm History, the entry is listed as “Alarm Input 1” and “Alarm Input 2” regardless of the names entered here.
Language Selection

The intelliPANEL™ system can be configured for display in English, Spanish, Italian, French, German, Portuguese, Italian, Dutch, French, or Norwegian.

Press the appropriate button for the desired language. The currently selected language is indicated at the bottom of the screen.

Setting the Display Brightness/Contrast

The intelliPANEL™ touchscreen display contrast and brightness can be adjusted to compensate for environmental lighting conditions. This is accomplished from the System Setup Menu. The contrast adjust is located directly above the “Menu” button on the right side. The value range for contrast is 0-32 with 0 being the lightest setting and 32 the darkest. Each touch of the up arrow button increases the value and touching the down arrow button decreases it.
II. Operating the intelliPANEL™

Once the intelliPANEL™ has been setup, the system is ready to begin control functions. All of the system’s operational information and controls can be accessed from the Main Menu. This section of the manual will guide the user through the operation of the system.

On power-up the Welcome screen is displayed. Press the “Begin” button to access the Main Menu. This will open the Main Menu. Yellow buttons are used throughout the system for navigation through the different displays. Pressing a “Menu” button anywhere in the system will open the Main Menu.

The following areas can be accessed from the Main Menu:

- **Alarm** – Displays alarm status and history.
- **Tune/Control** – Allows user to modify Setpoint, change controller modes, and adjust outputs.
- **Heater** – Displays voltage, current, power and resistance values.
- **Temp data** – Displays current temperature, high and low values, and allows reset of those values.
- **Graphic** – Displays graphical picture of the heater and current temperatures.
- **System Setup** – With the proper password, this button displays the System Setup Menu.
- **Interlock** – Displays interlock status information.
- **Temp Trend** – Displays the 6-pen temperature trend chart.
- **GF Trend** – Selects the Ground Fault Leakage Current chart recorder.
- **Help** – Takes the user to the Help Menu which contains troubleshooting guides, product information, tuning help, spare parts list, preventive maintenance guides, and contact information.
Alarm Screens

The temperature alarms are arranged in groups of four. The first alarm screen covers alarms for inputs 1-4, the second covers inputs 5-8. Other key indicators appear in the right side of alarm screen 1 and the left side of alarm screen 2. From the Main Menu press the “Alarm” button to access Process Alarm Screen 1. Once displayed, pressing the “5-8” button will open Process Alarm Screen 2.

Indicators are solid green when no alarm is present.

Indicators will flash red/yellow when an alarm condition exists.
Alarm Indication & Reset

Alarm status indicators are displayed on two screens: Process Alarm screens 1 & 2. Alarms will flash red/yellow when active. Inactive alarms are indicated as solid green. This convention is used throughout the system. Each column of alarms is labeled with the associated input number as well as the first word of the identifier (maximum 9 characters) for easier recognition.

Each of the temperature alarms react as programmed from the Alarm Setup screens. (See page 23, Section I, Alarm Setup) For instance, if the Low Temperature Setpoint for Input 6 is set at 100°F, and the temperature falls to or below that value, an alarm is generated. If a Deadband of 10°F is programmed, the temperature will have to rise to 110°F before the alarm will clear. If that same alarm has been programmed as a latching alarm, the alarm will not clear until the Alarm Setpoint and Deadband values are satisfied, AND the “RESET” button has been pressed. Temperature alarms that are not programmed as latching will clear themselves as soon as the temperature Alarm Setpoint and Deadband values are satisfied. Alarms that are mapped to the alarm outputs will energize/de-energize the appropriate output as programmed in the Alarm Setup screens. (See page 23, Section I, Alarm Output Setup)

![Diagram of Alarm Indication & Reset](image-url)

In addition to the temperature alarms, there are 5 status indicators for key system elements per screen. The discrete indicators on Process Alarm screen 1 include Alarm Input 1(or Purge Alarm), Ground Fault alarm, SCR Shorted alarm, Disconnect Status alarm, and High Limit alarm. These indicators are defined as follows:

Alarm Input 1/Purge Alarm: For systems equipped with the control panel purge option, purge integrity is monitored by this input. For systems without this option installed, Alarm Input 1 may be used for user defined alarming. When alarming for Alarm Input 1 is enabled (See page 26, Section I, Alarm Setup, Discrete Alarms) and the input signal is not present, an alarm is generated.

Ground Fault: Ground fault leakage current is continuously monitored and an alarm contact is closed when the defined limit value is reached. This limit is defined by switch settings on the ground fault monitor in the control panel.
SCR Status: The SCR pack is constantly monitored for a shorted condition. If the SCR is shorted the indication will change from green to red and the text will change from “SCR OK” to “SCR shorted”.

Disconnect Status: The disconnect status is an indication of the open or closed status of the main disconnect.

High Limit Trip: The high limit trip is an indication of the high limit controller. If the high limit controller has experienced an over-temperature reading it will be indicated here.

The discrete indicators on Process Alarm screen 2 include Alarm Input 2, Hand-Off-Auto Selector Switch status, Breaker status, Heatsink Over-Temp, and Threshold Clear status. These indicators are defined as follows:

Hand-Off-Auto Selector Status: The indicator displays whether or not the HOA selector switch on the panel is in the Auto position.

Breaker Status: The load side breakers are constantly monitored by the system. If any of these breakers are found to be in a tripped condition an alarm will be generated.

Heatsink Overtemp: The SCR pack is cooled by a built-in heatsink. The temperature of the heatsink is being monitored by the system. If the temperature reaches 186°F (85°C) an alarm is generated. The SCR pack will shut itself down at a heatsink temperature of 200°F (93°C).

Threshold clear: The Threshold clear is an indication that the temperature reading of the high limit controller has cleared the low threshold setting confirming the function of the sensor input and that it is wired correctly. If the sensor wiring is reversed the temperature reading will go down scale when heat is applied to the system. This will cause the contact to open and an alarm will be generated.
System Master

The System Master screen is automatically displayed any time a shut-down event occurs within the system. The shut-down conditions are listed on the System Master screen and the event(s) that caused the shut-down are indicated by flashing red text. Elements that are not responsible for the shut-down and are in their ‘normal’ state are indicated by solid green text. In the example below, a High Limit Trip has been detected and shut the system down.

Once the System Master screen has been displayed, the user can press the “Return” button to reopen the previous screen. After the “Return” button has been pressed, the user can move through the system screens as required to help determine the cause of the shut-down. However, if the cause of the shut-down has not been corrected within 10 minutes, the System Master screen will be redisplayed. This will cycle will repeat until the condition or conditions have been resolved. When ever a shut-down event occurs, temperature control loops are set to Manual mode with zero output. Once the shut-down conditions have been cleared the operator must go to the Tune & Control screen and set the controller(s) back to the desired loop control mode.
Alarm History

To access the Alarm History screen press the “Alarm History” button at the bottom of either Process Alarm screen 1 or 2. The first screen that appears will show the total alarms logged, the order in which they were logged, and the associated message. Press the “Page Down” button at the bottom of the screen to view more entries. Press “Line Up” or “Line Down” to select a particular alarm entry. Once an entry is highlighted, you may then press the “DTLS” button for more detailed information about that entry. Press the “Alarm Count” button to go to the Alarm Count screen. Pressing the “Clear All” button will open a keypad for password entry. Only those with Supervisor, or greater, security level access may clear alarms. Upon entry of the correct password, all alarms in the history will be cleared. Press “Exit” to return to the graphical alarm screen.

Alarm Count

The Alarm Count screen lists all of the possible alarms in the system and indicates how many times each alarm has been activated since the last time the list or the individual alarm was cleared. The counts for the entire list can be cleared using the “Clear All” button. The count for an individual alarm can be cleared by moving the cursor to the desired alarm and pressing the “Clear” button. Both clear buttons require Supervisor security access level or higher. A keypad is displayed for entry of the security code.

Note: Clearing Alarm Counts does not clear the Alarm History.
Graphic

The Graphic screen shows a representation of a typical circulation heater, the current temperature values of sensor inputs 1-5, and the text identifiers for each.

Press the "Menu" button to return to the Main Menu.

Heater Status

The Heater Status screen displays the load amperage and voltage for each phase of the power circuit. Also displayed on the right side of the screen are the duty cycle and the power in kilowatts. The unbalanced current alarm setpoint is entered by pressing the numeric entry field and using the keypad provided to enter the value in amps. If there is an unbalanced current condition in the system, the text indicators will flash red indicating which phase-pair has caused the alarm.

Press to enter the unbalanced current alarm setpoint.

Press the "Menu" button to return to the Main Menu.

Press the "Resistance" button to open the second heater status screen.

Heater Resistance

The Resistance screen displays the both the initial and current load element resistance, the kilo-watt-hours, total operating hours and the time/temperature (Life Factor) values for the system. The kilowatt-hour, total hours, and the life factor values can be reset but require either the manager or engineer level security password.
Pressing the “Capture” button moves the Current resistance values to the Initial resistance values. This should be performed when the system is commissioned or the elements replaced to give a baseline value for the load resistance. This function is password protected.

Pressing the reset buttons will display a keypad for password entry to allow reset of the values.

Press the “Back” button to return to the Heater Status screen.

Press the “Menu” button to return to the Main Menu.

Pressing the Capture and Reset buttons will display a keypad for entry of either the Manager or Engineer password. Entry of the correct password will complete the action and the captured value will be moved or the selected value reset depending on the button pressed.

Temperature Data
The Temperature Data screens display the text identifier, the actual current temperature, the highest temperature, and lowest temperature recorded for each input sensor. The high and low values for each sensor can be reset by pressing the reset button to the right of the low temperature reading. When the reset button is pressed the high and low values go to zero briefly and then record the actual temperature at the moment of reset. From that point onward the highest and lowest temperatures are recorded. The temperatures are displayed in the units selected during system setup.
Temperature Data 1 screen displays the actual, high, and low temperature for each of the input sensors 1-4 as well as the differential temperature between Outlet and Inlet. Pressing the “Next” button opens Temperature Data 2 where the high and low temperatures for input sensors 5-8 can be observed and reset.

Temperature Data 2 screen displays the actual, high, and low temperature for each of the input sensors 5-8 and provides the resets for those channels. Pressing the “Previous” button returns the user to Temperature Data 1. To return to the Main Menu press the “Menu” button.
Tune & Control

The “Tune & Control” button on the Main Menu gives the user access to one of four control screens depending upon which control mode is selected in the System Setup Menu (See page 18, Section I, Control Mode and Range Settings). The five available control modes are; Single Loop, Differential, Cascade – Outlet to Sheath, Cascade – Input 5 to Sheath, and Remote Command Signal.

Single Loop Control

When Single Loop control mode is selected, pressing the “Tune & Control” button on the Main Menu opens the Single Loop Control screen. This screen contains the text identifier, process variable, ramp setpoint, actual setpoint display and entry, controller output percentage indication, manual output entry, setpoint high limit, setpoint low limit, auto/manual selection and the setpoint ramping On/Off indicator. Additionally, the PID tuning parameters for the control loop can be accessed from this screen with the proper security code.

The process variable (PV) for single loop mode is Input 2 (factory default: Outlet Temperature) and is the current process temperature that the loop is controlling. The setpoint (SP) is a numeric entry field for the desired temperature. The setpoint is limited by the high and low limits shown on the right side of the display. Controller output is the current level of output (0-100%) from the temperature controller. In manual mode, the output of the controller is adjusted using the Manual Output Entry field. The Auto and Manual selector buttons allow the user to set the control mode. The current mode is indicated by green text with a black background on the selector buttons. In the example below, the loop is in Auto mode. Tuning parameters for the control loop are accessed by pressing the “Tune” button. (See page 43, Section III, Loop Tuning) These parameters are protected by security code.

Setpoint ramping is used to cause the setpoint being fed to the controller to gradually ramp to the entered setpoint at the specified rate in degrees/hour. Setpoint Ramping is configured from the System Setup Menu (See page 19, Section I, Setpoint Ramping). The status of setpoint ramping is indicated in the upper right corner of the display.

Setpoint Ramping is considered to be complete when any one of the following conditions is encountered:

1. The process variable (PV) exceeds the entered setpoint.
2. The entered setpoint is set to a value which is less than the process variable.
3. The ramp setpoint equals the entered setpoint.
4. Setpoint ramping is disabled from the Setpoint Ramping Setup screen.

Upon completion of Setpoint Ramping, the Ramp SP value will be reset to zero and normal PID control will resume using the operator-entered setpoint.
Differential Control

When Differential Control mode is selected, pressing the “Tune & Control” button on the Main Menu opens the Differential Control screen. This screen contains the text identifier, process variable, ramp setpoint, actual setpoint display and entry, controller output percentage indication, manual output entry, setpoint high limit, setpoint low limit, auto/manual selection and the setpoint ramping status indicator. Additionally, the PID tuning parameters for the control loop can be accessed from this screen with the proper security code.

The process variable (PV) for differential control mode is composed of the temperature difference between Input 2 (factory default: Outlet Temperature) and Input 1 (factory default: Inlet Temperature). The control loop is designed to maintain the differential temperature. The setpoint (SP) is a numeric entry field to enter the desired temperature. The setpoint is limited by the high and low limits shown on the right side of the display. Controller output is the current level of output (0-100%) from the temperature controller. In manual mode, the output of the controller is adjusted using the Manual Output Entry field. The Auto and Manual selector buttons allow the user to set the control mode. The current mode is indicated by green text with a black background on the selector buttons. In the example below, the loop is in Auto mode. Tuning parameters for the control loop are accessed by pressing the “Tune” button. (See page 43, Section III, Loop Tuning) These parameters are protected by security code.

Setpoint ramping is used to cause the setpoint being fed to the controller to gradually ramp to the entered setpoint at the specified rate in degrees/hour. Setpoint Ramping is configured from the System Setup Menu. (See page 20, Section I, Setpoint Ramping) The status of setpoint ramping is indicated in the upper-right corner of the display.

Setpoint Ramping is considered to be complete when any one of the following conditions is encountered:
1. The process variable (PV) exceeds the entered setpoint.
2. The entered setpoint is set to a value which is less than the process variable.
3. The ramp setpoint equals the entered setpoint.
4. Setpoint ramping is disabled from the Setpoint Ramping Setup screen.

Upon completion of Setpoint Ramping, the Ramp SP value will be reset to zero and normal PID control will resume using the operator-entered setpoint.
Cascade Control

Two modes of cascade control are available in the intelliPANEL™ system; Outlet to Sheath and Process to Sheath. Outlet to Sheath Cascade mode uses Input 2 (factory default: Outlet Temperature) as the process variable for the major loop and Input 4 (factory default: Sheath Temperature) as the process variable for the minor loop. Process to Sheath Cascade mode uses Input 5 (factory default: Outlet Temperature) as the process variable for the major loop and Input 4 (factory default: Sheath Temperature) as the process variable for the minor loop.

When either Cascade control mode is selected, pressing the “Tune & Control” button on the Main Menu opens the Cascade Control screen. This screen contains the text identifiers, process variables, ramp setpoint, actual setpoint displays and entries, controller output percentage indications, manual output entries, setpoint high limit, setpoint low limit, auto/manual/cascade selections and the setpoint ramping On/Off indicator. Additionally, the PID tuning parameters for the control loops can be accessed from this screen with the proper security code.

Cascade control is comprised of two complete PID control loops working together to control the process temperature. The first loop of the pair is referred to as the major loop. The process variable (PV) for the major loop is the temperature being controlled. The major loop reacts to the process variable by changing the controller output. This output is then scaled and fed to the setpoint of the minor loop as a temperature value. The temperature value’s range is determined by the range selected from the System Setup Menu (See page 19, Section I, Mode and Range Settings, Temperature Range). The minor loop responds by regulating its output to control to the setpoint being fed from the major loop’s output.

The operator entered setpoints of both loops are limited to values that fall between the high and low “SP Entry Limits” shown on the right side of the display. Pressing the numeric entry fields labeled “SP” opens the keypad for setpoint entry. When the loops are in manual mode the outputs can be adjusted by pressing the “Manual Output” numeric entry field. In cascade mode the 0-100 % output of the Major loop is scaled to the high and low values of the “Remote SP Limits” and sent to the setpoint of the Minor loop. Keep in mind that if the minor loop is in Cascade mode and the major loop’s output is adjusted, the setpoint being fed to the minor loop will change and the process will be affected.
Loop modes are set by pressing the mode selector buttons associated with each loop. Loop modes are indicated on the selector buttons by green text on a black background. When the intelliPANEL™ system is initially started both loops will be in manual mode. To enter cascade mode, the minor loop’s mode selectors have to be operated in sequence. The loop cannot go directly from manual to cascade mode or from cascade to manual mode. From manual mode, press the minor loop’s “Auto” selector button. Auto mode will then be indicated. Only then can the loop be switched to cascade mode by pressing the “Casc” button. The major loop can only be set to auto mode when the minor loop is in cascade mode.

Setpoint ramping is used to cause the setpoint being fed to the major loop to gradually ramp to the entered setpoint at the specified rate in degrees/hour. Setpoint Ramping is configured from the System Setup Menu. (See page 20, Section I, Setpoint Ramping) The status of setpoint ramping is indicated in the upper right corner of the display.

Setpoint Ramping is considered to be complete when any one of the following conditions is encountered:
1. The process variable (PV) exceeds the entered setpoint.
2. The entered setpoint is set to a value which is less than the process variable.
3. The ramp setpoint equals the entered setpoint.
4. Setpoint ramping is disabled from the Setpoint Ramping Setup screen.

Upon completion of Setpoint Ramping, the Ramp SP value will be reset to zero and normal PID control will resume using the operator-entered setpoint.

Remote Command Signal
When Remote Command Signal is selected from the Mode/Range screen (See page 18, Section I, Mode and Range Settings, Control Mode) temperature control is generated from a remote source and passed through the controller to the SCR pack. In this mode, the “Tune & Control” button on the Main Menu and the Tuning screens are not accessible. All other screens function as described in this manual.

Interlock Status
The Interlock Status screen displays the status of the four interlock permissives. To access the Interlock Status screen from the Main Menu press the “Interlock” button. The status indicators are labeled using the text identifiers entered during system setup (See page 13, Section I, Interlock Identification Text Entry). In all cases, the status indicator is illuminated green when the interlock is satisfied and flashing red/yellow when the permissive is inhibiting operation. This convention is used regardless of whether the interlock has been programmed for an active state of open or closed. Interlocks that are not enabled are shown as satisfied (See page 17, Section I, Interlock Setup).
Temperature Trending

Temperature trending is accessed from the Main Menu by pressing the “Temp Trend” button. The temperature trend is a six pen trend chart. The six pens trace line graphs for Inputs 1-5 and the setpoint for Loop 2 (Single, differential, or cascade major loop setpoint). The trend graph automatically adjusts to the range selected by the user during system setup. (See page 19, Section I, Control Mode and Range Setting, Temperature Range) The ranges are; 0-250°, 0-500°, 0-1000°, 0-1500°, and 0-2000°. The vertical axis of the graph is marked in degrees and the horizontal axis is marked with the sample number.

The trend takes a sample every 3 seconds and displays 100 samples per screen (300 seconds or 5 minutes). The graph has a storage history of 999 samples. Samples are discarded on a first-in/first-out basis. The historical points are viewed by pressing the arrow buttons at the top of the display. The “<” and “>” buttons move the display backwards and forwards 50 samples at a time respectively until the end is reached. The “<<” and “>>” buttons move the display to the all the way to the beginning and the end of the trend.

The graph can be cleared using the “CLR” button. However, caution should be used, as this will clear ALL data in the history. The trend can also be stopped and started as desired. To stop the trend, press the “Stop” button. The indication on the button will change to “Start”. Press the button a second time and the graph will begin to record again. Each time the trend graph is stopped and started again a blue vertical line will appear to indicate missing data as seen in the example below.
GF Trend

The GF Trend is accessed from the Main Menu by pressing the “GF Trend” button. This one line trend graph displays the ground fault (GF) leakage current of the SCR pack. The chart range is 0-100% and represents the range selected by rotary and DIP switch settings on the ground fault current monitor instrument in the control panel. Samples are taken at ten-minute intervals and displayed on the chart.

The trend takes a sample every 10 minutes and displays 100 samples per screen (1000 seconds or 16-2/3 hours). The graph has a storage history of 999 samples. Samples are discarded on a first-in/first-out basis. The historical points are viewed by pressing the Arrow buttons at the top of the display. The “<” and “>” buttons move the display backwards and forwards, 50 samples at a time respectively until the end is reached. The “<<” and “>>” buttons move the display all the way to the beginning and the end of the trend.

The graph can be cleared using the “CLR” button. However, caution should be used, as this will clear ALL data in the history. The trend can also be stopped and started as desired. To stop the trend, press the “Stop” button. The indication on the button will change to “Start”. Press the button a second time and the graph will begin to record again. Each time the trend graph is stopped and started again a blue vertical line will appear to indicate missing data as seen in the example below.
III. Loop Tuning

The IntelliPANEL system offers two methods of loop tuning. The user can choose to either tune the loops manually or can use the auto tune feature. Manual tuning can be used to enter the PID parameters from the touchscreen keypad. When the auto tune feature is used, the controller will automatically calculate the PID parameters based on loop performance. Both tuning methods are available in single loop, differential, or cascade control modes.

The proportional, reset and rate values are entered by touching the appropriate numeric entry fields and using the provided keypad. The units and spans for each term are outlined as follows:

<table>
<thead>
<tr>
<th>Term</th>
<th>Span</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional</td>
<td>20-2000</td>
<td>Degrees</td>
</tr>
<tr>
<td>Reset</td>
<td>0.61-60</td>
<td>Repeats/Minute</td>
</tr>
<tr>
<td>Rate</td>
<td>0.00-99.99</td>
<td>Seconds</td>
</tr>
</tbody>
</table>

Note: The numeric keypad does not have a decimal point key. However, the correct number of decimal places is predefined for each variable and will be displayed in the results window of the keypad. For example, if the desired value for Rate is 15.38, simply press the 1, 5, 3, and 8 keys and the value in the results window of the keypad will be 0.01, 0.15, 1.53, and 15.38 successively. Press the “Enter” key to accept the value. If you find that an error has been made in the entry, press the clear button and reenter the correct value. Pressing the “Cancel” button closes the keypad and the previous value is retained. This applies to all numeric entries throughout the system.

Single and Differential Mode Manual Tuning
Single Loop and Differential loop tuning procedures are identical. To access loop tuning, open the Tune & Control screen and press the “Tune” button in the upper right area of the screen. The tuning parameters are password protected. A keypad requesting a security code will be displayed. The user must have a Manager, Engineer, or Maintenance level security password to access the tuning screens. Once the proper security code is entered, the Manual Tuning screen will be displayed.

Press the “Tune” button and enter the security code to open the Manual Tuning screen.

IMPORTANT: To prevent unauthorized changes to the PID tuning parameters, the user should go back to an unsecured screen such as the Main Menu or Loop Control Screen when the selected tuning procedure is complete.
The correct manual tuning screen will be displayed based on the current control mode. Proportional, reset, rate, setpoint and output entries can be made using the numeric entry fields. Loop mode can be selected by pressing the Auto/Manual mode selector buttons. Once the tuning parameters have been entered, the user can observe the results of the changes by pressing the “Trend” button. This will open the temperature trend graphic so that loop performance can be monitored. Pressing the “Control” button takes the user back to the Loop Control screen. To go to the Main Menu press the “Menu” button. Touching the “Auto Tune” button opens the Auto Tuning screen.

Single and Differential Mode Auto Tuning

The intelliPANEL™ system’s auto tune feature makes PID loop tuning easy. Before beginning an auto tune cycle, place the loop in manual mode and ensure that the PV and output values are near the middle of their respective ranges. There should be a separation of at least 20 degrees between the process variable and the setpoint. If this step is not followed, the auto tune function may generate an error and the tuning cycle will not be completed. In the event an error is generated, the display will indicate that an error has been encountered and a reset button will appear to allow a reset of the error.

Auto tuning is accessed from the loop tuning screen by pressing the “Auto Tune” button. This will bring up the Auto Tuning screen so that the tuning method can be set and the cycle started.

There are two methods of auto tuning: open-loop and closed-loop. The open loop method induces a step change on the controller output and measures the response of the process variable (PV). Based on the response of the PV, the auto tune function calculates and applies the PID values to the loop controller. The closed-loop method applies alternating high and low output signals to the process for three cycles and measures changes in the PV. At the end of the auto tuning cycle, the PID variables are calculated and written to the controller.

Using the auto tuning procedures will affect the process, including inducing large changes in the control output value. Make sure you thoroughly consider the impact of any changes that could result in personnel injury or equipment damage and take adequate measures to minimize this risk!
To begin an auto tuning cycle, first select the method by pressing either the “PID closed loop” or “PID open loop” button in the upper left corner of the display. The button for the selected method will turn green. Next, press the “Auto-Tune” button. This will begin the auto tune cycle. Once the cycle has begun, the “Cancel” button will appear and the status indicator will change from “Complete” to “Tuning...” and begin to flash. To abort the tuning cycle, press the “Cancel” button. The “Error Reset” button will only appear when an error occurs in the auto tuning cycle.

The tuning procedures for both Cascade modes are identical. To access loop tuning open the Tune & Control screen and press the “Tune” button in the upper right area of the screen. The tuning parameters are password protected. A keypad requesting a security code will be displayed. The user must have Manager, Engineer, or Maintenance level security password to access the tuning screens. Once the proper security code is entered, the Manual Tuning screen will be displayed.
The correct manual tuning screen will be displayed based on the current control mode. Proportional, reset, rate, setpoint and output entries for both loops can be made using the numeric entry fields. Loop modes can be selected by pressing the Auto/Manual/Cascade mode selector buttons. (Remember, the major loop can only be set to Auto mode when the minor is in Cascade mode.)

Once the tuning parameters have been entered the user can observe the results of the changes by pressing the “Trend” button. This will open the temperature trend graphic so that loop performance can be monitored. Pressing the “Control” button takes the user back to the Loop Control screen. To go to the Main Menu press the “Menu” button. Touching the “Auto Tune” button opens the Auto Tuning screen.
Cascade Mode Auto Tuning

Cascade Mode auto tuning is basically the same as for single loop and differential modes. The difference is that there are two loops to be tuned rather than one. Before beginning the minor loop auto tune cycle, the major loop should be set to manual mode with zero output. Additionally, set the minor loop in manual and ensure that the PV and output values are near the middle of their respective ranges. There should be a separation of at least 20 degrees between the process variable and the setpoint. If this is not done, the auto tune function may generate an error and the tuning cycle will not be completed. In the event an error is generated, the display will indicate that an error has been encountered and a reset button will appear to allow a reset of the error.

Auto tuning is accessed from the loop tuning screen by pressing the “Auto Tune” button. This will bring up the Auto Tuning Selection screen allowing the user to select the loop to be tuned. Since the minor loop is connected to the final control element and acts as a series component to the major loop, it needs to be tuned first.

Pressing the “Tune Minor” button opens the Auto Tune screen for the minor loop so that the tuning method can be set and the cycle started.

There are two methods of auto tuning open-loop and closed-loop. The open loop method induces a step change on the controller output and measures the response of the process variable (PV). Based on the response of the PV, the auto tune function calculates and applies the PID values to the loop controller. The closed-loop method applies alternating high and low output signals to the process for three cycles and measures changes in the PV. At the end of the auto tuning cycle, the PID variables are calculated and written to the controller.

Using the auto tuning procedures will affect the process, including inducing large changes in the control output value. Make sure you thoroughly consider the impact of any changes that could result in personnel injury or equipment damage and take adequate measures to minimize this risk!

To begin an auto tuning cycle, first select the method by pressing either the “PID closed loop” or “PID open loop” button in the upper left corner of the display. Next, press the “Auto-Tune” button. This will begin the auto tune cycle. Once the cycle has begun, the “Cancel” button will appear and the status indicator will change from “Complete” to “Tuning…” and begin to flash. To abort the tuning cycle, press the “Cancel” button.
Pressing the “Trend” button at the bottom of the screen will open the temperature trend graph. The “Back” button returns the user to the Auto Tune Selection screen.

To begin an auto tuning cycle, first select the method by pressing either the “PID closed loop” or “PID open loop” button in the upper left corner of the display. Next, press the “Auto-Tune” button. This will begin the auto tune cycle. Once the cycle has begun, the “Cancel” button will appear and the status indicator will change from “Complete” to “Tuning…” and begin to flash. In the event an error is encountered, a reset button will be displayed to clear the error. To abort the tuning cycle, press the “Cancel” button. As soon as the auto tune cycle is finished, the PID parameters are written to the controller and the status indicator will change from “Tuning…” to “Complete”. The minor loop is now ready for process control. The last step prior to leaving this screen is to set the loop to Cascade mode in preparation for auto tuning of the major loop. Place the loop in Cascade mode and press the “Back” button. This will reopen the Cascade Auto Tuning Selection screen. From there, press the “Tune Major” button to continue with the next step of the auto tuning procedure.

If the minor loop is not set to Cascade mode before pressing the “Back” button, the “Tune Major” button will not be accessible. A message will appear above the “Tune Major” button reminding the user to set the minor loop to Cascade mode.

This is the Cascade Auto Selection screen as it appears if the minor loop is not set to cascade mode. The “Tune Major” button is not accessible and a message flashes above the button reminding the user to set the minor loop to the correct mode.
With the minor loop in cascade mode, the major loop is ready for auto tuning. From the Auto Tuning Selection screen press the “Tune Major” button. This opens the Major Loop Auto Tune screen. The current PID parameters, setpoint and output entry fields, and mode selectors are displayed on the left. The auto tuning features are shown on the right. Just as with the minor loop, all that is required is to select either the closed-loop or open-loop method and press the “Auto Tune” button.

Just as with the minor loop, the major loop auto tune screen will show a button for canceling the auto tune process after a cycle is started and a button to reset an error, if encountered. When finished, the tuning function writes new PID values to the controller and the status will be displayed as complete. At this point, both loops of the cascaded pair are in control of the process. To prevent unauthorized changes to the PID parameters, the user should press the “Control” button to return to the Loop Control screen.

IMPORTANT: To prevent unauthorized changes to the PID tuning parameters, the user should go back to an unsecured screen such as the Main Menu or Loop Control Screen when the selected tuning procedure is complete.
V. IntelliPANEL Product Specifications

INPUTS:
4-Channel RTD Input Module
Input Ranges
Type Pt100: -200.0/850.0ºC, -328/1562ºF
Type Pt1000: -200.0/595.0ºC, -328/1103ºF
Type jPt100: -38.0/450.0ºC, -36/842ºF
RTD Excitation Current 200 µA
Notch Filter > 50 db notches at 50/60 Hz
Maximum Setting Time 100 ms (full-scale step input)
Common Mode Range 0-5 VDC
Absolute Maximum Ratings
Fault-protected inputs to ±50 VDC
Sampling Rate 140 ms per channel

Notes:
1. The three wires connecting the RTD to the module must be the same type and length. Do not use the shield or drain wire for the third connection.
2. Unused channels require shorting wires (jumpers) installed from terminals CH+ to CH– to COM to prevent possible noise from influencing active channels.
3. If a RTD sensor has four wires, the plus sense wire should be left unconnected.

4-Channel Thermocouple Input Module
Input Ranges
Type J -190 to 760ºC -310 to 1400ºF
Type E -210 to 1000ºC -346 to 1832ºF
Type K -150 to 1372ºC -238 to 2502ºF
General Specifications
Number of Channels 4, differential
Common Mode Range -1.3 VDC to +3.8 VDC
Common Mode Rejection 100dB min. @ VDC 50/60 Hz.
Input Impedance 5MΩ
Absolute Maximum Ratings Fault-protected inputs to ±50 VDC
Update Rate 4 channels per scan
Open Circuit Protection Upscale or DOWscale
Display Resolution ±0.1ºC or ±0.1ºF
Cold Junction Compensation Automatic
Conversion Time 270ms per channel
Warm-Up Time 30 minutes, typically ± 1ºC repeatability
Linearity Error
(End to End) ±1ºC maximum, ±0.5ºC typical
Maximum Inaccuracy ±3ºC (excluding thermocouple error)

Notes:
1. Shields should be grounded at the power source only.
2. All CH- terminals must be connected together.
3. Unused channels should have a shorting wire (jumper) installed from CH+ to CH-.

Permissive Digital Inputs:
All Dry contact or triac rated for 120 VAC at 20 mA.

Relay Output Specifications
Output Voltage Range 6-240 VAC, 47-63 Hz
6-27 VDC
Maximum Voltage 264 VAC, 30 VDC
Maximum Current 2A/point
Maximum Leakage Current...... 0.1 mA @ 246 VAC
Smallest Recommended Load 5 mA @ 5 VDC

Relay Operating Cycles:
Voltage and Type
Load Current
of Load 1A 2A
24 VDC Resistive 600K 270K
24 VDC Solenoid 150K 60K
110 VAC Resistive 900K 350K
110 VAC Solenoid 350K 150K
220 VAC Resistive 600K 250K
220 VAC Solenoid 200K 100K

Touch Screen Display:
Screen Size 5.7 in. dia.
Resolution 320 x 240
Touch Grid 8 x 6

Communications:
Protocol ModBus Slave
Physical RS-422 4 wire
RS-485 2 wire
Baud Rate 2.4, 4.8, 9.6, 19.2, 38.4 Kbaud
Stop Bits 1 or 2
Parity odd, even, none
On Delay 5, 10, 20 ms.
Address 1 – 128
Max. network distance 4000 feet
Max. number of devices 32 per network
Max. baud rate 38.4 Kbaud
Max. driver load 62 ohms
Driver voltage ±1.5 V minimum
No load current 80mA
Max. current 100 mA (62 ohms)
Isolation resistance >1014 ohms/7pF
Voltage withstand 1.2 KVrms/1s
1.0 KVrms/1 minute
Termination Dipswitch selectable
Bias resistors Dipswitch selectable
RS485/RS422 Operation Dipswitch selectable
Connections Plug in removable terminals for field termination

- 50 -
CONTROL AND ALARM

Control Modes: Single Loop PID
 Differential PID
 Cascade PID/PID

PID Parameters:
 Proportional Band 20 to 2000 degrees
 Reset61 to 60 repeats per minute
 Rate 0 to 99.99 seconds
 Reset Windup Limit 100% fixed
 Rate Limit X10 fixed
 Manual Output 0 to 100%, 1% steps
 Control Setpoint full range, 0.1 deg. setting
 Setpoint Limits high and low full range,
 0.1 deg setting
 Alarm Setpoint full range, 1 deg. Setting
 Alarm Deadband 0 to 50.0, 0.1 deg. Setting
 Ramp to Setpoint 0 to 2000 deg.
 Per minute, 1 deg. setting

 Time Delay on Interlock 0 to 9999 seconds,
 1 second settable

Ground Fault Monitor
 Trip setting range 6 to 600 mA
 Current indication 0- 100% of trip set point

 Password 4 levels settable
 Time 24 Hr. clock hrs/min format

 Date mm/dd/yy format

Power Train Components
 Main Disconnect Switch load rated shunt trip
 with 25 kaic
 I2T fusing > 125% load with 100 kaic
 Load Circuit Breakers >125% load rated
 with 25 kaic
 Contactors if supplied load rated
V. Help Menu

The intelliPANEL™ system incorporates help screens to aid in troubleshooting, performing preventive maintenance, and identifying spare parts when repairs are required. Also included are help screens that provide information such as the software versions for the controller and touchscreen. The Product Information screen contains information specific to your system like PO number, date purchased, and drawing numbers for the system components. This information is useful should you ever need to contact Chromalox, Inc. regarding your intelliPANEL™ system. We have even provided contact information so that if you need assistance there is no need to search for our contact information. It’s all right there at your fingertips!

To Access the Help Menu, go to the Main Menu and press the “Help” button. The Help Menu will be displayed showing the possible selections.

Troubleshooting – Opens the troubleshooting menu which contains links to information for troubleshooting high cabinet temperature, high heatsink temperature, shorted SCRs, temperature alarms, control issues, and current unbalances.

Spare Parts – Opens the Spare Parts screen which lists commonly used spare parts for the system.

Auto Tuning – Displays a series of screens with useful information regarding the auto tuning feature.
Product Information – Opens the Product Information screen which shows the purchase order number, ship date, panel part number, panel drawing number, heater part number, heater drawing number, and tag number specific to the user’s system.

Version – Displays the installed display and controller software version numbers.

Preventive Maintenance – Displays important safety warnings and useful preventive maintenance actions that should be followed for trouble free operation.

Contact Chromalox – Opens a screen containing address, telephone number, and web site address for contacting Chromalox for additional information.

Examples of the help screens are shown below:

HIGH HEATSINK TEMPERATURE

The high heatsink alarm is monitored and generated by the firing circuit on the SCR Power Pak. The elevated temperature of the heatsink may be caused by the following conditions:

- Fan Failure on the SCR Power Pak
- Current draw exceeding the SCR rating
- Blocked air flow on the SCR Power Pak
- Loose power wire connections on the SCR
- High internal panel temperatures

SHORTED SCR HELP

To determine which of the SCRs has caused the alarm you must inspect the firing circuit on the SCR Power Controller. Use standard safety precautions when opening the cabinet. Observation of the firing circuit will show an LED indication of the faulty SCR. If the connected load is three wire delta, the SCR will continue to function normally with the shorted SCR and the repair of the unit may be scheduled for the next down time of the system.

SAFETY PRECAUTIONS

Safety precautions for the protection of personnel and equipment can be found in the safety summary in the written manual.

WARNING

An operating or maintenance procedure, practice, condition, statement, etc. which, if not strictly observed could result in injury or death of personnel.

WARNING

Use all standard lockout tag out procedures before working on the equipment.

1. Remove dust and dirt from components with a vacuum cleaner. Pay special attention to heatsinks used by SCRs for cooling.
2. Remove sticky dust, grease, and oil with a dry lint free rag or small brush dampened with Freon-FT
Product Information

Spare Parts

Software Versions

Contact Us
VI. Service Information

Chromalox is a global supplier, providing the highest level of customer support. If you should have questions concerning your intelliPANEL™ control panel, or need information, you may contact Chromalox at:

Chromalox
103 Gamma Drive Ext.
Pittsburgh, PA 15238
Telephone: 800-443-2640
(412) 967-3800
Fax: (412) 967-5148

For application questions, you can:
1. Call one of our application engineers for personal assistance at 1-888-996-9258.
2. Visit the technical reference section of our website at www.chromalox.com for downloadable manuals in .pdf format.
VII. Appendix

Modbus™ Register Numbers

Modbus Address Table

<table>
<thead>
<tr>
<th>Alarm Coils (Read)</th>
<th>Input 1</th>
<th>Input 2</th>
<th>Input 3</th>
<th>Input 4</th>
<th>Input 5</th>
<th>Input 6</th>
<th>Input 7</th>
<th>Input 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lo-Lo Alarm</td>
<td>3073</td>
<td>3077</td>
<td>3081</td>
<td>3085</td>
<td>3089</td>
<td>3093</td>
<td>3097</td>
<td>3101</td>
</tr>
<tr>
<td>Lo Alarm</td>
<td>3074</td>
<td>3078</td>
<td>3082</td>
<td>3086</td>
<td>3090</td>
<td>3094</td>
<td>3098</td>
<td>3102</td>
</tr>
<tr>
<td>Hi Alarm</td>
<td>3075</td>
<td>3079</td>
<td>3083</td>
<td>3087</td>
<td>3091</td>
<td>3095</td>
<td>3099</td>
<td>3103</td>
</tr>
<tr>
<td>Hi-Hi Alarm</td>
<td>3076</td>
<td>3080</td>
<td>3084</td>
<td>3088</td>
<td>3092</td>
<td>3096</td>
<td>3100</td>
<td>3104</td>
</tr>
<tr>
<td>Sensor Fault</td>
<td>3105</td>
<td>3106</td>
<td>3107</td>
<td>3108</td>
<td>3109</td>
<td>3110</td>
<td>3111</td>
<td>3112</td>
</tr>
<tr>
<td>Alarm Setpoint Error</td>
<td>3113</td>
<td>3114</td>
<td>3115</td>
<td>3116</td>
<td>3117</td>
<td>3118</td>
<td>3119</td>
<td>3120</td>
</tr>
</tbody>
</table>

Discrete Alarm Input 1	3121
Discrete Alarm Input 2	3122
Unbalanced I L1-L2	3123
Unbalanced I L1-L3	3124
Unbalanced I L2-L3	3125
Reserved	3126-3136

Miscellaneous Coils (Read)

- Disconnect Status 3137
- Load Side Breaker Status 3138
- Heatsink Overtemp 3139
- SCR Shorted 3140
- Ground Fault 3141
- Selector Switch Auto 3142
- E-stop 3143
- Sheath High Limit 3144
- Threshold Clear 3145
- Shell High Limit 3146
- Interlock 1 [Flow] 3147
- Interlock 2 [Pressure] 3148
- Interlock 3 [Time Delay] 3149
- Interlock 4 [Spare] 3150
- Cascade Minor Loop Mode
 - Manual 3151
 - Auto 3152
 - Cascade 3153
- Single, Differential, or Cascade
- Major Loop Mode
 - Manual 3154
 - Auto 3155
- Degrees Celsius Selected 3156
 (On=Celsius, Off=Fahrenheit)
- Single Loop Mode 3157
- Differential Mode 3158
- Cascade 1 [Outlet/Sheath] 3159
- Cascade 2 [Input5/Sheath] 3160
- Remote Command Signal 3161
Registers (Read)³

<table>
<thead>
<tr>
<th></th>
<th>Single Loop</th>
<th>Differential</th>
<th>Cascade Major</th>
<th>Cascade Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setpoint (SP)</td>
<td>41035</td>
<td>41035</td>
<td>41035</td>
<td>41033</td>
</tr>
<tr>
<td>Process Variable (PV)</td>
<td>41036</td>
<td>41036</td>
<td>41036</td>
<td>41034</td>
</tr>
<tr>
<td>Output %</td>
<td>41114</td>
<td>41114</td>
<td>41114</td>
<td>41113</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temperature</td>
<td>Highest Recorded</td>
<td>Lowest Recorded</td>
<td>Delta T (Input2-Input1)</td>
<td>Hi-Hi Alarm Setpoint</td>
<td>Hi Alarm Setpoint</td>
<td>Lo Alarm Setpoint</td>
<td>Lo-Lo Alarm Setpoint</td>
</tr>
<tr>
<td></td>
<td>41037</td>
<td>41040</td>
<td>41043</td>
<td>41046</td>
<td>41049</td>
<td>41052</td>
<td>41055</td>
<td>41058</td>
</tr>
<tr>
<td></td>
<td>41038</td>
<td>41041</td>
<td>41044</td>
<td>41047</td>
<td>41050</td>
<td>41053</td>
<td>41056</td>
<td>41059</td>
</tr>
<tr>
<td></td>
<td>41039</td>
<td>41042</td>
<td>41045</td>
<td>41048</td>
<td>41051</td>
<td>41054</td>
<td>41057</td>
<td>41060</td>
</tr>
<tr>
<td></td>
<td>41061</td>
<td>41062</td>
<td>41063</td>
<td>41064</td>
<td>41065</td>
<td>41066</td>
<td>41067</td>
<td>41068</td>
</tr>
<tr>
<td></td>
<td>Hi-Hi Alarm Setpoint</td>
<td>41070</td>
<td>41074</td>
<td>41078</td>
<td>41078</td>
<td>41079</td>
<td>41082</td>
<td>41086</td>
</tr>
<tr>
<td></td>
<td>Hi Alarm Setpoint</td>
<td>41071</td>
<td>41075</td>
<td>41079</td>
<td>41083</td>
<td>41087</td>
<td>41088</td>
<td>41091</td>
</tr>
<tr>
<td></td>
<td>Lo Alarm Setpoint</td>
<td>41072</td>
<td>41076</td>
<td>41080</td>
<td>41084</td>
<td>41088</td>
<td>41089</td>
<td>41092</td>
</tr>
<tr>
<td></td>
<td>Lo-Lo Alarm Setpoint</td>
<td>41073</td>
<td>41077</td>
<td>41081</td>
<td>41085</td>
<td>41089</td>
<td>41093</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deadband</td>
<td>41094</td>
<td>41095</td>
<td>41096</td>
<td>41097</td>
<td>41098</td>
<td>41099</td>
<td>41100</td>
</tr>
</tbody>
</table>

Volts
- A-B: 41102
- B-C: 41103
- C-A: 41104

Amps
- A: 41105
- B: 41106
- C: 41107

Duty Cycle: 41108
Power - kW: 41109
Resistance
- A-B: 41110
- B-C: 41111
- C-A: 41112
Coils (Write)

<table>
<thead>
<tr>
<th>Input 1</th>
<th>Input 2</th>
<th>Input 3</th>
<th>Input 4</th>
<th>Input 5</th>
<th>Input 6</th>
<th>Input 7</th>
<th>Input 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2[Inlet]</td>
<td>[Outlet]</td>
<td>[Shell]</td>
<td>[Sheath]</td>
<td>[Input5]</td>
<td>[Input6]</td>
<td>[Input7]</td>
<td>[Input8]</td>
</tr>
</tbody>
</table>

Reset Highest/Lowest Recorded Values

| 3569 | 3570 | 3571 | 3572 | 3573 | 3574 | 3575 | 3576 |

Registers (Write)

<table>
<thead>
<tr>
<th>Single Loop</th>
<th>Differential</th>
<th>Cascade Major</th>
<th>Cascade Minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setpoint</td>
<td>40770</td>
<td>40770</td>
<td>40770</td>
</tr>
<tr>
<td>Output % (Manual mode)</td>
<td>40812</td>
<td>40812</td>
<td>40812</td>
</tr>
</tbody>
</table>

Hi-Hi Alarm Setpoint	40771	40775	40779	40783	40787	40791	40795	40799
Hi Alarm Setpoint	40772	40776	40780	40784	40788	40792	40796	40800
Hi Alarm Setpoint	40773	40777	40781	40785	40789	40793	40797	40801
Lo-Lo Alarm Setpoint	40774	40778	40782	40786	40790	40794	40798	40802
Deadband	40803	40804	40805	40806	40807	40808	40809	40810

Notes:
1. Alarm coils are ON when NOT in alarm, OFF when in alarm. An internal communications error will cause all Alarm Coils to be set to OFF or alarm state. This does not apply to Miscellaneous Coils.
2. Text in square brackets [] are factory default text identifiers.
3. An internal communications error will cause all read registers to go to the maximum value of 32767.
4. All temperature and setpoint registers have one implied decimal place (i.e.: 15457 = 1545.7 degrees)
Replacing the CPU Backup Battery

The intelliPANEL™ system is equipped with a lithium backup battery (Chromalox Part Number 0108-70102) to retain RAM memory if the processor is without power for an extended period of time. Typical battery life is 5 years. If the battery voltage is low, output Y10 will be on (contacts closed).

Warning: If the CPU has been without power for more than ten days with a low battery the system configuration data may have to be reloaded.

To install the battery in the CPU:
1. Press the retaining clip on the battery door back and swing the door open.
2. Place the battery into the slot as shown on the top of the battery door.
3. Rotate the battery door back into position making sure that it locks securely in place.
4. Make a note of the date the battery was installed.
Theory of Operation

The set up of the individual parameters is explained in each section of the manual. This overview is intended to give a quick summary of system functionality.

One of five modes of control can be set up by the user. The available control modes are:

- **Single Loop:** Temperature Input 2 is used as the process variable for modulating the control output.

- **Delta T (Differential):** The difference between Temperature Input 2 and Input Temperature 1 is used as the process variable for modulating the final control element.

- **Cascade Mode 1:** Cascade control is accomplished by use of Temperature Input 2 as the process variable of the Major Loop. The control output of the Major loop is routed to the Minor loop as a variable temperature setpoint. The Minor Loop uses Temperature Input 4 as the process variable for modulation of the final control element.

- **Cascade Mode 2:** Cascade control is accomplished by use of Temperature Input 5 as the process variable of the Major Loop. The control output of the Major loop is routed to the Minor loop as a variable temperature setpoint. The Minor Loop uses Temperature Input 4 as the process variable for modulation of the final control element.

- **Remote Command Signal:** A 4-20 mA signal from a remote source (PLC, DCS, or other controller) is passed through the IntelliPANEL controller for modulation of the final control element.

Up to eight temperature sensors can be wired to the controller for monitoring and alarming. All eight temperatures are monitored and the highest and lowest values are automatically recorded. The high/low values can also be reset. HI-HI, HI, LO, and LO-LO configurable alarms are available for each temperature input. The user can choose which alarms to send to the four alarm relay outputs.

All shut-down conditions are monitored and when one is encountered a pop-up System Master screen is displayed indicating the status of the items that can cause the shut-down. Items that caused the shut-down flash red while items that are in a “healthy” state are indicated in solid green. When a shut-down occurs, the control loops are set to Manual mode with zero percent output.

System variables can be communicated to and from the controller via MODBUS™ protocol after setting up the communications port. Refer to the Section titled “Applying Communication Settings” for information on how to properly set the communication parameters. A list of communicated variables and their addresses can be found at the beginning of the Appendix.